Vol 32(2016) N 5 p. 69-76; DOI 10.21519/0234-2758-2016-32-5-69-76
K.A. Lukyanenko1, I.A. Denisov1*, A.S. Yakimov1, E.N. Esimbekova1,2, K.I. Belousov3, A.S. Bukatin1, I.V. Kukhtevich1, V.V. Sorokin1, A.A. Evstrapov3,4, P.I. Belobrov1,2

Analytical Enzymatic Reactions in Microfluidic Systems

1The Siberian Federal University, Krasnoyarsk Russia
2The Institute for Biophysics, Russ. Acad. Sci., Siberian Branch, Krasnoyarsk Russia
3The ITMO University, St.-Petersburg Russia
4The Institute for Analytical Instruments, St.-Petersburg Russia



1. Gubala V., Harris L.F., Ricco A.J., et al. Point of Care Diagnostics: Status and Future. Analytical Chem. 2012, 84(2), 487-515.

2. Jung W., Han J., Choi J., et al. Point-of-care testing (POCT) diagnostic systems using microfluidic lab-on-a-chip technologies. Microelectronic Engineering. 2015, 132, 46-57.

3. Danielmark S.H. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem. Soc. Rev. 2010, 39, 1153-1182.

4. Evstrapov A.A. Microfluidic chips for biological and medical research. Russ. J. General Chem. 2012, 82(12), 2132-2145.

5. Ning R., Wang F., and Lin L. Biomaterial-based microfluidics for cell culture and analysis. Trends Anal. Chem. 2016, 80, 255-265.

6. Midwoud P.M., Janse A., Merema M.T., et al. Comparison of biocompatibility and adsorption properties of different plastics for advanced microfluidic cell and tissue culture models. Anal. Chem. 2012, 84(9), 3938-3944.

7. Temiz Y., Lovchik R.D., Kaigala G.V., et al. Lab-on-a-chip devices: How to close and plug the lab? Microelec. Eng. 2015, 132, 156-175.

8. Kratasyuk V.A., and Esimbekova E.N. Applications of luminous bacteria enzymes in toxicology. Comb. Chem. High Throughput Screen. 2015, 18(10), 952-959.

9. Shimomura O. Bioluminescence: Chemical Principles and Methods (Singapore, Republic of Singapore), World Scientific Publishing Co. Pte. Ltd, 2012, 470.

10. Bezrukikh A.E., Esimbekova E.N., Nemtseva E.N., et al. Gelatin and starch as stabilizers of the coupled enzyme system of luminous bacteria {NADH:FMN-oxidoreductase-luciferase. Analyt. Bioanalyt. Chem. 2014, 406(23), 5743-5747.

11. Lonshakova-Mukina V.I., Esimbekova E.N., and Kratasyuk V.A. Impact of enzyme stabilizers on the characteristics of biomodules for bioluminescent biosensors. Sens. Actuat. B: Chem. 2015, 213, 244-247.

12. Guckenberger D.J., de Groot T.E., Wan A.M.D., et al. Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices. Lab. Chip. 2015, 15(11), 2364-2378.

13. Chung B.G., Lee K., Khademhosseini A., et al. Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering. Lab. Chip. 2012, 12(1), 45-59.

14. Leth, S., Maltoni S., Simkus R., et al. Engineered bacteria based biosensors for monitoring bioavailable heavy metals. Electroanalysis. 2002, 14(1), 35-42.

15. Hakkila K., Green T., Leskinen P., et. al. Detection of bioavailable heavy metals in EILATox -Oregon samples using whole-cell luminescent bacterial sensors in suspension or immobilized onto fibre-optic tips. Appl. Toxicol. 2004, 24(5), 333-342.